
Seminar MPOC:

The use of Neural Networks in Ocean Modelling

Erik van Sebille

June 6, 2005

Abstract

This paper gives a short introduction in the use of Neural Networks in
ocean modelling. It shows that the mathematical foundations of neural
networks, both in a topological and a mathematical/algorithmic sense
are firm. There are a lot of questions that have to be dealt with, but
in principle the technique is adequate.Some comments are given on the
process of training an Neural Network. This is a complicated but crucial
part in the successful use of Neural Networks in modelling in general.

Finally, four examples of the use of Neural Networks in ocean mod-
elling are discussed.

(1) A Neural Network approach to solve the UNESCO equation of
state, cutting computational effort on this part of the large ocean models.
The technique can also be applied to do the inverse: calculate salinity
from density and temperature.

(2) A Neural Network approach to model nonlinear wave interactions.
This problem is far more complex and the final solution is still far away.
However, progress has been made.

(3) A Neural Network approach to the principal component time se-
ries analysis. The nonlinear nature of Neural Networks offers great ad-
vantage, especially when analyzing oscillatory or otherwise nonlinear pro-
cesses. This is backed by the improvement in the analysis of the ENSO
phenomenon.

(4) A Neural Network approach to translate remote sensing data to
geophysical variables. The Neural Network is used to process SSM/I data
in a very accurate, fast and easy way. This example does not show a
particularly intricate Neural Network, but it accentuates the diversity in
capabilities of simple Neural Networks.

1 Introduction

Neural Networks is a technique emerging as a tool for ocean modelers. It’s use
has been widespread under the scientific community for a while, and since the
late nineties it is also implemented in geophysical models. Most applications are
in the meteorological field of research, but can be extended to the ocean. In this

1



paper, the Neural Network-method will be discussed from the ocean modelling
point-of-view. First, a theoretical description of Neural Networks is given, based
on the paper by Krasnopolsky et al. [2002]. After this, four examples of Neural
Networks in ocean modelling will be discussed. They will be:

• The equation of state, following the paper by Krasnopolsky et al. [2002].

• The wind wave interactions, after the paper by Tolman et al. [2005].

• Principal component time series analysis, based on the papers by Hsieh
[2004] and by Hsieh and Tang [1998].

• Remote sensing data processing, following the paper by Krasnopolsky and
Schiller [2003]

The paper ends with a discussion on the problems and promises of Neural
Network use in ocean modelling.

1.1 A brief history

Hsieh and Tang [1998] give a nice overview of the development of Neural Net-
works in general. The Neural Network technique originated when biologists
wanted to develop a model for the human brain in the 1940’s. They were fasci-
nated by the complexity and abilities (memory, speech recognition) of the brain
and tried to mimic these abilities by making very complex graphs. They hoped
that in this way they could give these graphs some self-learning capabilities.

Years passed and the final breakthrough came with the rediscovery of the
back-propagation algorithm in 1986 by Rumelhart et al. [1986]. Through this
algorithm (see also section 2.2), Neural Networks could be trained in a time-
effective manner.

After this breakthrough, scientists became interested to use Neural Networks
for applications in many different fields of research. Neural Networks are now
used in the field of biometrics, where the need for pattern recognition is immi-
nent. Neural Networks can be trained for e.g. speech, facial, iris and fingerprint
recognition.

Financial forecasters also make use of Neural Networks when trying to pre-
dict stock rates. They use Neural Networks as black boxes for analyzing time
series without any assumptions on the forces and mechanisms that control the
economy.

Neural Networks are also used in bio-informatics to relate DNA to gen-
activity. And finally, meteorologists use Neural Networks to distinguish different
kinds of clouds in satellite images.

2



Linear

r=Σ(Ω
i
Txin

i
)+B

Nonlinear

zout =φ(r)

xin
n

xin
n-1

xin
i

xin
1

xin
2

zout

Figure 1: A model of a neuron, consisting of a linear and a nonlinear part. After
Krasnopolsky et al. [2002]

2 Theory

2.1 Creating a Neural Network

There are two ways to look at a Neural Network. The first one is the topo-
logical, in which the network is presented as a directed graph with nodes and
edges, representing the flow of data through the network. The other is a more
mathematical/algorithmic point of view. The Neural Network is a set of con-
secutive sums of weighted input variables. Both views have their advantages
and disadvantages, and they will be both be used throughout this paper.

A Neural Network constitutes a mapping F of an input vector X with pa-
rameters X = {x1, x2, . . . , xn} to an output vector Y = {y1, y2, . . . , ym}. The
mapping is continuous except for a finite number of discontinuities:

Y = F (X), X ∈ Rn, Y ∈ Rm (1)

The actual mapping is done by a network of neurons or nodes. These neurons
are the processing elements. They require an input vector Xin and return a value
zout. A typical neuron is shown in figure 1. The neurons consist of a linear part
and a nonlinear part. The linear part returns the sum r of the inner product of
the vector X with weights Ω and a bias B. The result r, a linear combination of
the input vector, is the argument for some nonlinear function φ, which returns
the value zout. φ is called the activation function. It can be written as

zout = φ

(
n∑

i=1

ΩT
i xin

i

)
+ B (2)

Any nonlinear function will do for φ but common choices are the logistic
function φ = 1

1−e−r and the hyperbolic tangent function φ = tanh(r). Both
function stay bounded as x → ±∞, making sure that the weights Ωi will not
become extremely large. Moreover, the derivatives of these functions are easily
computed. This is required for the back-propagation teaching algorithm (see

3



Input layer Hidden layer Output layer

xx
22

xx
33

xx
11

xx
44

zz
22

zz
33

zz
11

yy
22

yy
11

Figure 2: The Neural Network, made up by several bipartite connected layers of
neurons. In this case an input, a hidden and an output layer. The nodes are neurons
as depicted in figure 1

section 2.2). Note that a neuron can easily be made linear by choosing the
identity, φ = r, for the activation function.

A neuron has an input vector and an output scalar and is contained in a
large graph of neurons, the Neural Network (see figure 2). This graph is directed
and consists of several layers that are bipartite connected. It has a feed-forward
direction, from the input via the hidden to the output layer. In this form, it
is referred to as the Multi-Layer Perceptron (MLP). The neurons in the input
layer are linear. They simply distribute the vector X to the hidden layer. In
this layer the neurons are nonlinear as depicted in figure 1. The nodes in the
output layer, can be either linear or nonlinear and are the collectors for the
vector Y .

The number of neurons in the input layer is equal to the dimension of the
vector X, the number in the output layer to that of the vector Y . One is free
to choose the number of nodes in the hidden layer. It should depend on the
complexity of the problem to solve and will require some trial-and-error.

We can now write down an expression for a full Neural Network with one
hidden layer, as depicted in figure 2. We assume that the first layer only collects
the separate elements of the vector X, i.e.

Ω = I, B = 0 ∀ neurons in input layer (3)

with I the identity matrix. We also assume that the activation function for the
output layer is the identity, φ = r.

4



In this configuration, the expression for an element yq of vector Y as a
function of the input elements xi of vector X and an activation function φ =
tanh(r) can be written as

yq =
k∑

j=1

ωT
qj

[
tanh

(
n∑

i=1

ΩT
jixi + Bj

)]
+ βq (4)

where Ωji and Bj are the weights and biases of the neurons in the hidden layer
and ωqj and βq are the weights and biases in the output layer.

Using equation (4), the implementation of a Neural Network in a computer
language is straightforward and requires only additions and multiplications, pro-
vided that the language has a good and fast hyperbolic tangent function. Most
computer languages do.

It is also possible to acquire the Jacobian of the mapping, an array of all
possible partial differentials ∂yq

∂xp
, with little computational burden. The partial

differentials can be written as

∂yq

∂xp
=

k∑
j=1

1−

[
tanh

(
n∑

i=1

ΩT
jixi + Bj

)]2
Ωpjωjq (5)

and is in this notation not very different from equation (4). This Jacobian is
very useful in some applications, such as the computation of the equation of
state for seawater (see section 3.1).

2.2 Teaching a Neural Network

Before the Neural Network can be used to map the input vector X to the out-
put vector Y , the parameters Ωji, Bj , ωqj and βq in equation (4) need to be
known. The technique to obtain these parameters is called teaching. The idea
of teaching is to show the Neural Network a set of (X, Y )-pairs. After it has
learned the mapping between those pairs, it should be able to construct the
output vector of a never encountered input vector. It is because of this teach-
ing, that people often talk about artificial intelligence in the context of Neural
Networks. However, it is nothing more than smart interpolation and curve-
fitting between already known (X, Y )-pairs. There are numerous techniques
that do this, the only advantage of the Neural Network technique is that it uses
nonlinear interpolations.

To obtain the parameters Ωji, Bj , ωqj and βq in equation (4), the Neural
Network needs to be fed with a practise set. This practice set is usually an
already known subset (Xd, Yd) of the mapping that is researched. By feeding
the subset to the Neural Network, the weights are set to appropriately map the
input X to the output Y . The technique can therefore only be used when both
a set Xd and a corresponding set Yd are at hand.

The most renowned algorithm for teaching a Neural Network is the back-
propagation algorithm by Rumelhart et al. [1986]. The algorithm iteratively

5



Validation cost function

Training cost function

C
o

st
 fu

n
ct

io
n

 J

Number of iterations τ

Figure 3: The cost function of the training set (dashed curve) and the validation set
(solid curve) as a function of the number of iterations of the training algorithm. The
minimum of the validation cost function at iteration step τ is the time to stop the
training. (Figure after Gardner and Dorling [1998])

searches for a global minimum of the cost function

J =
m∑

q=1

(yq − ydq)2 (6)

where yq are the elements of the output vector Y and ydq are the corresponding
elements of the training set vector Yd. It is difficult to find a global minimum,
as the function J can be very nonlinear and have many local minima. The
algorithm can easily get stuck in such a local minimum and an observer will
never be sure that the reached minimum is the global minimum. Enlarging
the practise set and increasing the number of iterations in the back-propagation
algorithm are techniques to decrease the chance of a reached minimum not being
the global minimum.

However, the number of iterations should not get too large. If this is the
case, there is a possibility of overfitting, especially if the data contains noise.
The algorithm will try to fit to all the noise and it will not behave optimal on
a new input vector.

One way to solve the problem of overfitting is to have another data set, the
validation set, at hand. During the training period, the network is trained on
the practise set and its performance is checked on the validation set. When
overfitting starts to occur, the cost function of the validation set will start to
get larger (see figure 3). This is the time to stop.

The selection of the training set (Xd, Yd) also requires some attention. Es-
pecially when the teaching subsets are small or misbalanced compared to the
expected input on operation, good results are not guaranteed. Misbalanced
means that the subset is not a good representation of the total set. Neural
Networks are better in interpolating than in extrapolating so attention has to

6



be paid to the selection of the subset. Gardner and Dorling [1998] note that
especially for prediction, scientists are often interested in extremes (thunder-
storms, floods). Such events by definition occur very rarely and a training set
made up by these events will be small. One can use a teaching set built from
normal weather conditions, but this requires extrapolating when interested in
the extremes, limiting the use of Neural Networks in such cases.

In the remainder of this section, three techniques shall briefly be discussed
to improve the training mechanism. Their actual usefulness may be questioned,
but in general they give extra insight in the complicated process of training a
Neural Network.

2.2.1 Validity checks

It is possible to signal occurrences of extrapolation. Krasnopolsky and Schiller
[2003] note that if both the mapping between vectors X and Y and the in-
verse mapping Finv exist, another Neural Network can be built with X and Y
swapped. Now, by definition:

X = Finv(F (X)) (7)

if the mappings are correct. This is normally the case in the subspace where
the Neural Network was tought to interpolate. In subspaces of X where the
mapping was destined to extrapolate however, this equation (7) is not in general
true because of the inferiority of the mappings.

Therefor, during the execution of a Neural Network, the occurrence of a data
set outside the training set can be signaled using a validity check∑

(X − Finv(F (X))) > ε (8)

with ε some threshold value. When equation (8) is true, the operator can be
warned and must handle appropriately.

2.2.2 Weight penalties

Hsieh [2001] discusses a different approach to the problem of overfitting. He
argues that overfitting is very often caused by an exaggeration of the non-
linearity of the problem at hand. This would especially be the case when noise
is not a factor.

The activation function φ = tanh(r) with r ∼ Ω · Xin, has the property
that for a given X in the bounded interval [−L,L], it can go two ways. If Ω is
very small, φ ∼ X, being almost linear. If Ω is very large on the other hand, φ
will approach the extremely non-linear step function. Hsieh states that this is
unwanted behavior.

To avoid the last from happening, Hsieh introduces the notion of a weight
penalty. This is a term added to the cost function making sure that the weights
Ωji will not become too large:

7



J =
m∑

q=1

(yq − ydq)
2 + p

k∑
j=1

k∑
i=1

Ω2
ji (9)

with p the weight penalty parameter.
This weight penalty parameter must be tuned as a trade-off between a less

non-linear solution and an over-linearized one. This makes the procedure less
attractive, but it is good to mention it as a way to solve overfitting of noise-free
data sets.

2.2.3 Sobolev normed cost functions

Krasnopolsky and Chevallier [2003] comment on the cost function J being used.
They note that when the main goal for the Neural Network is to produce the
Jacobian (equation (5)), it is recommended to use an alternative cost function.
During the training period the Jacobian is not taken into account and therefor
its accuracy during operation may not be optimal. One could off course include
the Jacobian in the training set, but this increases the complexity both of the
training set and of the Neural Network. Another approach is to build a second
Neural Network dedicated to compute only the Jacobian, but this doubles the
effort spent both on training and during operation.

The best way to include the Jacobian in the training process is to alter the
cost sum, which is just an Euclidian norm, to a more general form. In a so
called Sobolev norm (a generalization of the Euclidian norm), the derivatives
of a function are also taken into account. This implies that if the training set
vector Yd approaches Y , but also gets more oscillatory, the cost function will
not generally decrease. This is because the ‘distance’ between the derivatives
increases.

The new cost function can now be written as

J =
m∑

q=1

(yq − ydq)
2 +

m∑
q=1

k∑
i=1

(
∂yq

∂xi
− ∂ydq

∂xi

)2

(10)

where yq are the elements of the output vector Y and ydq are the corresponding
elements of the training set vector Yd.

The drawback of using this new cost function is that training time will
significantly increase due to a higher complexity of J . Moreover, it is possible
that to accomodate a reasonable value for J , the number of hidden neurons has
to be increased, at the cost of more computational effort during execution.

8



3 Examples

3.1 The equation of state

Large oceanographic models used for climate study are very time-consuming in
their calculation of the evolution of the state of the ocean. Runs can take up to
months for the entire ocean. The models basically perform two kinds of calcu-
lations during these runs. On the one hand, there is the time-integration of the
governing differential equations, simplifications of the Navier-Stokes equations.
Code for this is often highly optimized.

On the other hand, models must perform complicated mathematical equa-
tions. One of these is the equation of state for seawater, relating temperature,
salinity and pressure to a density. This density is required as a parameter by the
governing equations. In some cases, calculation of the equation of state can take
up to 20% of the total computation time (Griffies et al. [2000]). Improving this
calculation scheme can reduce computation time significantly (remember that
these models typically run for weeks, and a 10% increase in speed can reduce
that by days).

The relation between temperature, salt, pressure and density are governed
by the Unesco Equation of State (UES). The UES is an empirical relation agreed
upon in 1981. This relation is stated in Gill [1982]. The actual equation consists
of a number of consecutive steps with 40 parameters:

1. First the density ρ(0, T, 0) of pure water for a given temperature is calcu-
lated using a polynomial of degree five in the temperature.

2. Two additional polynomials of degree four are multiplied by the salinity
to obtain the density at one standard atmosphere, ρ(S, T, 0).

3. The above two steps are repeated to obtain a bulk modulus K(S, T, 0).

4. Calculation of the bulk modulus K(S, T, p) requires solving a polynomial
with fourteen different terms.

5. Finally, the density at pressure p is

ρ(S, T, p) =
ρ(S, T, 0)

1− p
K(S,T,p)

(11)

Because of the 40 parameters, direct calculation of the UES is cumber-
some to say the least. And because of the dependence on three fields (the
3-dimensionality) an a priory calculation for the density stored into a lookup
table takes too much memory. Building such a table with a range of D =
{−2◦ < T < 40◦C, 0 < S < 40 psu, 0 < P < 10, 000 decibar} and precision
σ = {T ± 0.01◦C, S ± 0.01 psu, P ± 0.1 decibar} would require a table with
1.7 · 1012 elements. This is an impossible number, even for supercomputers.

Krasnopolsky et al. [2002] describe how the problem of solving the equation
of state for seawater can be addressed in a Neural Network setting. They created

9



Input layer Hidden layer Output layer

SS

PP

TT

zz
22

zz
33

zz
11

ρρ

Figure 4: The Neural Network for solving the UNESCO Equation of State. The nodes
zk in the hidden layer are neurons as depicted in figure 1

a Neural Network with three neurons in the input layer (representing the input
{T, S, p}), three in the hidden layer and one in the output layer, representing
the output ρ. The total network is depicted in figure 4.

Using this graph, calculating the density via equation (4) consists of a total
of 12 multiplications, 25 additions and taking 3 tangent hyperbolics (see the
algorithm 1). This is far less than the calculation needed for the original UES.

Algorithm 1 An implementation of the UES Neural Network algorithm
1: x = {T, S, P}
2: ρ = 0
3: for j=1 to 3 do
4: r = 0
5: for i=1 to 3 do
6: r = r + Ωji · xi

7: r = r + Bj

8: end for
9: r = tanh(r)

10: ρ = ρ + ωj · r
11: end for
12: ρ = ρ + β
13: return ρ

Off course, when reforming a deterministic function like the UES to an ap-
proximate function like equation (4), errors are bound to be made. However,
due to variations in the composition of the dissolved salts in the sea water and
uncertainty in the pressure, the uncertainty in the UES is about 0.05–0.1 kg
m−3. So if the Neural Network algorithm stays within an error of 0.1 kg m−3,

10



Figure 5: Error of the Neural Network algorithm as a function of temperature T and
salinity S at the ocean surface (z = 0). Figure from Krasnopolsky et al. [2002]

this method is not worse than applying the UES directly.
Krasnopolsky et al. [2002] constructed a teaching set of 4000 points in the

{T, S, p} domain. Because the corresponding densities are exactly known (at
least, the UES outcome is), they could easily evaluate the cost function equation
(6). Moreover, the entire scope of expected values can be dealt with without
having to deal with noisy data so a lot of the problems discussed in section 2.2
do not apply to this case.

This resulted in a configuration of the Neural Network parameters Ωji, Bj ,
ωj and β such that the error in the density as calculated by the Neural Network
is shown in figure 5. It shows that the calculated density is never off more
than 0.1 kg m−3 except at the combination of low temperature and low salinity,
which is never encountered in the ocean.

In principle, it is odd that the authors even find such a large error. Their
training set can comprise the entire domain, and can be as large as they need it
to be. That is the advantage of modelling a deterministic equation. However,
if this is the case, errors should be negligible. The authors can always decide to
add more {S, T, p, ρ} pairs of the UES to the training set and this will always
improve the neural network.

The authors do not comment on this, but it is likely that the number of
hidden neurons will be the bottleneck in this case. With only three hidden
neurons, the degrees of freedom of the neural network will be limited. It would
be interesting to see whether adding a hidden neuron would decrease the errors
(at a trade-of with increasing computational effort).

However, we can conclude that the Neural Network approach to compute
the UES is within the error of the UES itself, at least for physically expected
values. The authors do not mention how their method does in the deep ocean,
but the results they show are certainly hopeful.

The authors remark that the density field does not have to be calculated for

11



Figure 6: Error in the density as a function of computational gain based on the use of
equation (12). Figure from Krasnopolsky et al. [2002]

every time step. One can also calculate the total differential

∆ρ =
∂ρ

∂T
∆T +

∂ρ

∂S
∆S (12)

where ∆T and ∆S are small differences in the temperature and salinity resulting
in a small difference in the density. The two partial derivatives ∂ρ

∂T and ∂ρ
∂S can

easily be obtained from the neural network by equation (5).
Assuming that the time step is small compared to the advective time scale,

the partial derivatives are valid for several tens of time steps. During these time
steps, the density can be calculated at virtually no computational cost. After
these time steps, the derivatives are recalculated. The authors claim almost no
extra errors and a nine times faster computation using this technique. This is
shown in figure 6.

We can conclude that the Neural Network technique is a promising technique
to apply to the UES. It vastly reduces computational effort and brings no extra
errors above the errors already present in the UES.

3.1.1 Retrieving Salinity

Besides discussing the usefulness of Neural Networks to approximate the UN-
ESCO equation of state (UES), Krasnopolsky et al. [2002] also discuss a neural
network application to the inverse problem, the calculation of salinity.

Ocean models often include the data assimilation of Sea Surface Temperature
(SST) retrieved from satellite observations. These observations are then used as
a boundary condition for the model at the ocean surface. This implies changing
the temperature in the upper layer of the ocean. But when the temperature is

12



changed, one should be careful to avoid gravitational instability. Decreasing the
SST without decreasing the salinity can result in an unstable water column.

The easiest way to solve this is to adjust the salinity to a value that gives a
marginally stable water column. In this way, the salinity field has to be altered
the least and stability is still preserved.

The question is therefor how to calculate the salinity given the temperature
and the density. This requires inverting the UES, an even more cumbersome
calculation than the one presented in the previous section, involving iterating to
the desired value for the density. However, since the relation between the three
variables is known, we can use a Neural Network approach. As we are only
correcting for the ocean surface, pressure influence can be ignored. The input
vector is made up by {ρ, T} and the output vector by S. Building a training
set is straightforward, using the normal UES.

Again the authors claim success, as the error in salinity (when related to a
density error) does not exceed the 0.1 kg m−3.

3.2 Wind wave interactions

Another field in ocean modelling where the use of Neural Networks is emerging
is that of wind wave interactions. However, unlike the equation of state, the
Neural Networks approach has not matured here. Results are promising but
there is no final model of how to effectively produce a Neural Networks method
for this field of research. One reason for this is that the problem at hand is far
more complex than the equation of state.

Scientists interested in the prediction of the wave field use the conservation
equation (following Tolman et al. [2005])

dF

dt
= Stot = Sin + Snl + Sds (13)

where the left-hand side denotes the evolution of the wind spectrum over time,
Sin is the source term of wind, Snl represents the non-linear interactions and
Sds is the dissipation of the wind spectrum.

The non-linear interaction is the term we are interested in for the moment.
It represents the lowest order mechanism to shift wave energy from short to
longer waves, from the main input scale to the dissipative scales. It thereby
maintains and stabilizes the shape of the spectrum.

The non-linear interaction can be described as the resonant exchange of
energy, momentum and actions between four components in the wave spectrum,
in such a way that

~k1 + ~k2 = ~k3 + ~k4

σ1 + σ2 = σ3 + σ4

(14)

for wave numbers ~k and wave frequency σ.

13



If the action spectrum is defined as n ≡ F/σ, the rate of change of this
action spectrum is expressed as

∂n1

∂t
=
∫

d~k2

∫
d~k3

∫
d~k4

G(~k1,~k2,~k3,~k4)δkδσ[n1n3(n4 − n2) + n2n4(n3 − n1)]
(15)

in which ni = F (~ki)/σi and G is a coupling coefficient.
This equation (15) involves a six dimensional integration (as ~k is two di-

mensional) and is therefor very time-consuming. This gets even worse as G is a
complicated, highly non-linear function that contains singularities.

Implementation of this wave action equation into wave models makes com-
puting Snl take up approximately 104 times more computational time than the
rest of the terms in equation (13). Therefor, improvements in the computation
of Snl directly result in a drop in computational effort for wave prediction.

There already exists a method to decrease the computational effort in the
non-linear interaction term. It is called Discrete Interaction Approximation
(DIA, Hasselman et al. [1985]) and evaluates the six integrals in equation (15)
using only a few discrete values for the wave numbers ~k. This DIA is now
used in wave models, but has some shortcomings. Most importantly, the higher
frequencies suffer from large systematic errors that are not yet overcome.

Because of the problems with the DIA, a Neural Network approach is now
tried. In this approach, the non-linear term Snl is mapped on the spectrum F

Snl = T (F ) (16)

This mapping has very high dimensionality because of the range of the two
vectors Snl and F . Krasnopolsky et al. [2002] even speak of vectors with over
600 elements (neurons). The hidden layer should have at least the same order or
neurons, giving the equation (4) a huge degree of freedom. This is unpractical,
since it will take much of the computational time to solve this equation.

In order to reduce the number of neurons for the two vectors, the spectrum
F and interaction term Snl are represented by two sets of orthogonal functions
Φi and Ψi.

F ≈
n∑

i=1

xiΦi and Snl ≈
m∑

i=1

yiΨi (17)

In this way the dimensionality can be controlled, at the cost of creating
systematic errors, not to rise exorbitantly. However, n and m can always be
chosen in such a way that there is no loss of generality.

The xi and yi in equation (17) are the input and output of the Neural
Network, equation (4). In this way, mapping a spectrum to the non-linear term
in equation (13) requires three basic steps:

1. Decompose the spectrum F to a vector X

14



Figure 7: One dimensional biases (upper panels) and rms errors (lower panels) as a
function of f̃ (left panels) and direction θ̃ (right panels) for the DIA (chain line) and
two versions of the Neural Network implementation (dashed and dotted line). The
solid line is not discussed in this paper. Figure from Tolman et al. [2005]

2. Feed the vector X to the Neural Network to obtain Y

3. Compose Snl from Y

This enumeration of steps already reveals one of the disadvantages of this
approach. The composition and decomposition, steps 1 and 3, take up a lot of
time. This is one of the points that can be improved in the future.

On overall, Neural Networks is a promising technique to calculate the non-
linear interaction from a wave spectrum. Tolman et al. [2005] find an order
of magnitude improvement in some special cases against the DIA model. This
is depicted in figure 7, where the authors plotted the errors in direction and
frequency of a validation set of 10,000 spectra. The authors use two different
functions for Φ and Ψ (equation (17)) and compared these with the DIA model.
Both functions performed better on the validation set, giving good hope that
this method can be a useful tool for modelling wind wave interactions when it
has fully been developed.

3.3 Time series analysis

A third example of the use of Neural Networks is for performing time series
analysis. Time series analysis is not widely used in ocean modelling, but it is
common practice in the field of climatology. Since there are many connections

15



between ocean modelling and climatology, it is also useful do discuss results of
Neural Network implementations in the time series analysis.

Hsieh [2004] discusses how to use Neural Network methods in the time series
analysis. In the time series analysis, one tries to make predictions about the
future based on knowledge about the past. The use of Neural Networks for
these kind of problems is widely supported. As stated in the introduction, even
stock brokers make use of Neural Network techniques when trying to outsmart
the market.

The advantage of Neural Networks is that no a priori assumptions have to
be made about the relations between variables. Moreover, these relations do
not have to be linear, as was the case with previous methods to analyze time
series.

The method discussed here is the Principal Component Analysis (PCA).
This method iteratively finds the principal components (linear coefficients) that
make up a time series.

The method starts by finding a linear combination u of a time series f(~x, t)
and associated spatial vector a(~x), with

u(t) =
n∑

i=1

ai(~x)f(t, ~x) (18)

in a way that the cost function

J =
∑

(f(~x, t)− a(~x)u(t))2 (19)

is minimized. The associated vector a is the coefficient of the first mode, as
it is called, of the PCA. When it is found, the procedure is repeated with the
residual (f(~x, t) − a(~x)u(t)) to retrieve higher modes, corresponding to higher
polynomials.

Linear methods such as the PCA are known to poorly resolve oscillatory
signals, such as seasonal variability. These processes are inherently non-linear
and should therefore require a non-linear analysis. The Neural Network method
as described in section 2 is a non-linear method and is therefor expected to
perform better on oscillatory problems.

A Neural Network used for time series analysis looks somewhat different
from the graphs we have already encountered. Instead of a linear map through
the vector a in equation (18), a nonlinear mapping

u(t) = g(X(t)) (20)

is allowed for. To do this a graph with three hidden layers is constructed (see
figure 8). The middle of these is the bottleneck layer and consists of only one
neuron. It is this neuron that performs the nonlinear map of equation (20).
The other hidden layers are used to transform between the observables and the
bottleneck. These layers are appreciated if the total Neural Network in figure
8 is viewed upon as two Neural Networks glued together. One maps from X

16



Input layer Hidden layer Bottleneck layer

xx
22

xx
33

xx
11

zz
22

zz
11

uu

z‘z‘
22

z‘z‘
11

x‘x‘
22

x‘x‘
33

x‘x‘
11

Hidden layer Output layer

Figure 8: The Neural Network for the time series analysis. The hidden layers are
used to transform between input vectors X and X ′ to a dimension acceptable for the
bottleneck neuron u. It is this bottleneck neuron u (always exactly one) that computes
the principal components. Higher modes can be obtained by iteratively feeding the
network with residuals.

to u and the other maps from u to X ′. Both networks need a hidden layer to
fully make use of the potential of the Neural Networking method in that all
non-linear combinations between input and output variables are possible.

The Neural Network can be trained by supplying a training set made up by
many observations X = {x1, x2, . . . , xn} and minimizing the cost function

J =
n∑

i=1

(xi(t)− x′i(t))
2 (21)

That is, the output vector X ′ should follow the input vector as close as possible.
If done in this way, the bottleneck neuron u gives the nonlinear principle com-
ponent, equivalent to the modes A of the PCA. The residual of this component
(i.e. x− g(u)) can pass the network to iteratively give higher modes.

It is important to note that the Neural Network in this case is very different
from the previous examples we have seen. Not only is the number of layers
extended, the use of the network has also changed. In the previous examples,
the Neural Network was first trained with a training set, and then used to
process unseen input to output. The exact nature of the weights and biases
inside the Neural Network was unimportant, and the hidden layers were in that
sense truly hidden.

In the Neural Network PCA, the network is used to obtain the coefficients.

17



PCA, with only the three leading modes retained. PCA
modes 1, 2, and 3 accounted for 51.4%, 10.1%, and 7.2%,
respectively, of the variance in the SSTA data. The first
three PCs (PC1, PC2, and PC3) were used as the input x for
the NLPCA network.
[21] The data are shown as dots in a scatterplot in the

PC1-PC2 plane (Figure 3), where the cool La Niña states lie
in the top left corner and the warm El Niño states lie in the
top right corner. The NLPCA solution is a U-shaped curve
linking the La Niña states at one end (low u) to the El Niño
states at the other end (high u), similar to the solution found
originally by Monahan [2001]. In contrast, the first PCA
eigenvector lies along the horizontal line, and the second
PCA lies along the vertical line (Figure 3), neither of which
would come close to the El Niño states in the top right corner
nor the La Niña states in the top left corner, thus demon-
strating the inadequacy of PCA. For comparison, a varimax
rotation [Kaiser, 1958; Preisendorfer, 1988] was applied
to the first three PCA eigenvectors. (The varimax criterion
can be applied to either the loadings or the PCs depending
on one’s objectives [Richman, 1986; Preisendorfer, 1988];
here it is applied to the PCs.) The resulting first RPCA
eigenvector, shown as a dashed line in Figure 3, spears
through the cluster of El Niño states in the top right corner,
thereby yielding a more accurate description of the El Niño
anomalies (Figure 4c) than the first PCA mode (Figure 4a),
which did not fully represent the intense warming of

Peruvian waters. The second RPCA eigenvector, also shown
as a dashed line in Figure 3, did not improve much on the
second PCA mode, with the PCA spatial pattern shown in
Figure 4b and the RPCA pattern shown in Figure 4d. In
terms of variance explained, the first NLPCA mode
explained 56.6% of the variance versus 51.4% explained
by the first PCA mode and 47.2% explained by the first
RPCA mode.
[22] With the NLPCA, for a given value of the NLPC u,

one can map from u to the three PCs. This is done by
assigning the value u to the bottleneck neuron and mapping
forward using the second half of the network in Figure 2a.
Each of the three PCs can be multiplied by its associated
PCA (spatial) eigenvector, and the three can be added
together to yield the spatial pattern for that particular value
of u. Unlike PCA, which gives the same spatial anomaly
pattern except for changes in the amplitude as the PC varies,
the NLPCA spatial pattern generally varies continuously as
the NLPC changes. Figures 4e and 4f show the spatial
anomaly patterns when u has its maximum value (cor-
responding to the strongest El Niño) and when u has its
minimum value (strongest La Niña), respectively. Clearly,
the asymmetry between El Niño and La Niña (i.e., the cool
anomalies during La Niña episodes (Figure 4f) are observed
to center much farther west of the warm anomalies during
El Niño (Figure 4e) [Hoerling et al., 1997]) is well captured
by the first NLPCA mode; in contrast, the PCA mode 1

Figure 3. Scatterplot of the sea surface temperatures (SST) anomaly (SSTA) data (shown as dots) in the
principal component (PC)1-PC2 plane, with the El Niño states lying in the top right corner and the La
Niña states lying in the top left corner. The PC2 axis is stretched relative to the PC1 axis for better
visualization. The first-mode NLPCA approximation to the data is shown by the (overlapping) small
circles, which traced out a U-shaped curve. The first principal component analysis (PCA) eigenvector is
oriented along the horizontal line, and the second PCA is oriented along the vertical line. The varimax
method rotates the two PCA eigenvectors in a counterclockwise direction, as the rotated PCA (RPCA)
eigenvectors are oriented along the dashed lines. (As the varimax method generates an orthogonal
rotation, the angle between the two RPCA eigenvectors is 90! in the three-dimensional PC1-PC2-PC3
space). From Hsieh [2001a], reprinted with permission from Blackwell Science, Oxford.

RG1003 Hsieh: NEURAL NETWORK METHODS

5 of 25

RG1003

Figure 9: Scatterplot of the sea surface temperature anomaly data (dots) in the princi-
pal component plane for the first two modes PC1 and PC2. El Ninõ states are situated
in the top right corner, while La Ninã states are in the top left corner. The first mode
PCA eigenvector is along the horizontal line, and the second mode eigenvector is along
the vertical line. The first mode of the Neural Network PCA is shown as circles. It is
clearly non-linear and fits the extremes much better. The meaning of the dashed lines
is not discussed in this paper. (From Hsieh [2001])

After training, the network will not be used for processing. Instead, the weight
and bias of the bottleneck neuron are retrieved and used for further research.
The network has become redundant after its training is completed.

Hsieh [2004] uses this method to analyze the El Ninõ Southern Oscillation
(ENSO). He compares a regular PCA with the Neural Network PCA. He finds
that when only two principal components are taken into account, the PCA very
poorly resolves the extremes of an El Ninõ and La Ninã occurrence (see figure
9).

The Neural Network PCA does much better on these instances. Because of
its non-linearity it can, even in only one mode, capture the oscillatory behavior
in the ENSO. Moreover, the spacial pattern of the NNPCA for different values
of X varies continuously.

It can therefor deal better with the asymmetry in the maximum of El Ninõ
and La Ninã situations. This is depicted in figure 10, where the greatest vari-
ability in the PCA modes is near the Peruvian coast. This would imply that
La Ninã is the mirror of El Ninõ, something not seen in the ocean. The Neural
Network does a much better job, situating the minimum of u in the middle of
the Pacific, just as observations show.

18



Figure 10: Sea surface temperature anomaly pattern of the PCA (a) and (b) and the
Neural Network PCA (c) and (d). The largest spatial variability is near the Peruvian
coast in the two PCA modes. In the Neural Network solution, the minimum (La Ninã)
is situated in the deep ocean, a much better simulation of the data. (Hsieh [2001])

3.4 Remote sensing

In remote sensing, the problem is that sensor data S has to be converted to
geophysical parameters G. The data from the sensors in satellites is often a
measurement of radiation in different frequencies and polarization. It is not a
straightforward task to extract relevant information from this.

The problem is one of casuality: even if it may be possible to derive a relation
between the geophysical parameters G and the sensor data S from physical
considerations, it may very well be that the inverse relation can not. The
relation between S and G does not correspond to a cause and effect principle;
i.e. the satellite data does not influence the geophysical parameters.

However, it is this mapping

G = F (S) (22)

that we seek when we want to interpret satellite data.
A lot of techniques have been developed to obtain this mapping, most using

iterating to a correct G for the known mapping S = F (G). This can be done
both linearly and nonlinearly, but in general achievements have not been perfect.

Besides the problems discussed above, the assimilation of remote sensing
retrieved data into for instance operational weather prediction models is also

19



very time relevant. The data assimilation part of a model should not take too
much time, better spent on iterating the governing differential equations.

These problems of both an unknown nonlinear continuous dependency of
geophysical parameters on remote sensing data and the urge of fast calculation
has motivated Krasnopolsky and Schiller [2003] to discuss a Neural Networks
approach in remote sensing.

The authors illustrate the advantages of a Neural Network by using data
from the SSM/I instrument. This instrument is an array of identical satellites
launched through the US defense meteorological satellite program (DMSP). The
satellites orbit the earth covering every ocean basin twice a day. The instrument
measures radiation in seven channels. At the frequencies of 19, 37 and 85 GHz
it senses the horizontal and vertical polarization, at 22 GHz only the vertical
polarization.

The SSM/I is used to obtain ocean wind velocity, columnar water vapor,
columnar liquid water and sea surface temperature (SST) over the oceans.

The Neural Network used by the authors is a pretty straightforward one.
The graph consists of an input vector S of five instrument channels (the 85
GHz channels are omitted), a hidden layer of 12 neurons and an output layer G
with the four geophysical parameters.

From buoy and ship observations, the authors constructed a training set. A
problem was that these data become sparse at high wind velocities, when ships
stay in the harbor and buoys fail to accurately sample wind velocity due to
rough conditions. So even if the authors wanted to, they could not construct a
balanced training set.

It is therefor that they develop the concept of a validity check (see also
section 2.2). In this way, although extreme storms can not be sampled during
operation, they can at least be flagged. It is for the operators to decide on
appropriate action after that.

The authors show that their Neural Network approach to the SSM/I remote
sensing problems gives best results in both clear and clouded cases. Especially
at high wind speeds, when the physics and therefor the models based on physi-
cal considerations become much more complicated, the Neural Network model
performs much better than any other model.

This example does not show a particularly intricate Neural Network, but
it accentuates the diversity in capabilities of simple Neural Networks. This
makes it an even more promising tool, as the generic version can with little
modifications be used in real life situations.

4 Discussion

We have seen that Neural Networks can be applied in Ocean Modelling in a wide
range of research questions. The level of maturity of the Neural Network method
varies, from very unmature in the wind wave modelling to fully developed in
the UNESCO equation of state problem.

20



The Neural Network technique looks promising for the three examples given
here, and each have their own peculiarities and problems, but there are a few
general issues that can be addressed.

It is not yet fully understood how the architecture of the Neural Networks
(number of hidden neurons) influences the outcomings. There are also no general
rules on what architecture to pick for a specific problem.

Training a Neural Network is not an easy job. Selecting a correct and rep-
resentative training set requires good understanding of the variables that are
important in the research. It has no use to include variables in the training set
that are not even remotely important in the process to be modelled. On the
other hand, one should be careful not to exclude potentially important param-
eters.

The length of the training is important, since a too short time will make the
training algorithm not to converge and a too large time can overfit the data.
Choosing the right length is still a manner of trial-and-error.

The Neural Network is often still a ‘black box’. It maps the input vector on
the output vector, but the physics behind it will remain a mystery. This is both
an advantage, since it requires no a priori choices, and a disadvantage. The
purpose of research should always be about understanding the physics behind a
process, not to construct some handy tool. There are people investigating how
to extract physics from the biases and weights of the Neural Network, but this
is still very immature.

The diversity in the three examples given here gives stimulation to be aware
of other problems in ocean modelling where the Neural Network technique can
be applied. Perhaps a Neural Network point-of-view on some difficult problems
facing the community can give new insights as on how to solve them. An ocean
modeler should therefor always have the Neural Network technique in his or her
mental toolbox.

21



References

M.W. Gardner and S.R. Dorling. Artificial neural networks (the multilayer
perceptron) – a review of applications in the atmospheric sciences networks
(the multilayer perceptron) – a review of applications in the atmospheric
sciences. Atmospheric Environment, 32, 1998.

A.E. Gill. Atmosphere-Ocean Dynamics. International Geophysics Series. Aca-
demic Press, 1982.

M.S. Griffies, C. Böning, F.O. Bryan, E.P. Chassignet, R. Gerdes, H. Hasumi,
A. Hirst, A-M. Treguier, and D. Webb. Developments in ocean climate mod-
elling. Ocean Modelling, 2, 2000.

S. Hasselman, K. Hasselman, J.H. Allender, and T.P. Barnett. Computations
and parameterizations of the nonlinear energy transfer in a gravity-wave spec-
trum, part ii: parameterizations of the nonlinear energy transfer for applica-
tion in wave models. Journal of Physical Oceanography, 15, 1985.

W.W. Hsieh. Nonlinear principal component analysis by neural networks. Tel-
lus, Ser. A., 53, 2001.

W.W. Hsieh. Nonlinear multivariate and time series analysis by neural network
methods. Review of Geophysics, 42, 2004.

W.W. Hsieh and B. Tang. Applying neural network models to prediction and
data analysis in meteorology and oceanography. Bulletin of the American
Meteorological Society, 7, 1998.

V.M. Krasnopolsky, D.V. Chalikov, and H.L. Tolman. A neural network tech-
nique to improve computational efficiency of numerical oceanic models. Ocean
Modelling, 4, 2002.

V.M. Krasnopolsky and F. Chevallier. Some neural network applications in
environmental sciences. part ii: advancing computational efficiency of envi-
ronmental numerical models. Neural Networks, 16, 2003.

V.M. Krasnopolsky and H. Schiller. Some neural network applications in en-
vironmental sciences. part i: forward and inverse problems in geophysical
remote measurements. Neural Networks, 16, 2003.

D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal represen-
tations by error propagation. MIT Press, 1986.

H.L. Tolman, V.M. Krasnopolsky, and D.V. Chalikov. Neural network approx-
imations for nonlinear interactions in wind wave spectra: direct mapping for
wind seas in deep water. Ocean Modelling, 8, 2005.

22


